Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 179
Filtrar
1.
Front Bioeng Biotechnol ; 12: 1347953, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38646011

RESUMO

Introduction: Protease activity can serve as a highly specific biomarker for application in health, biotech, and beyond. The aim of this study was to develop a protease cleavable synthetic protein platform to detect protease activity in a rapid cell-free setting. Methods: The protease sensor is modular, with orthogonal peptide tags at the N and C terminal ends, which can be uncoupled via a protease responsive module located in between. The sensor design allows for several different readouts of cleavage signal. A protein 'backbone' [Green fluorescent protein (GFP)] was designed in silico to have both a C-terminal Flag-tag and N-Terminal 6x histidine tag (HIS) for antibody detection. A protease cleavage site, which can be adapted for any known protease cleavage sequence, enables the uncoupling of the peptide tags. Three different proteases-Tobacco, Etch Virus (TEV), the main protease from coronavirus SARS-COV-2 (Mpro) and Matrix Metallopeptidase 9 (MMP9)-a cancer-selective human protease-were examined. A sandwich Enzyme-Linked Immunosorbent Assay (ELISA) was developed based on antibodies against the HIS and Flag tags. As an alternative readout, a C-terminal quencher peptide separable by protease cleavage from the GFP was also included. Purified proteins were deployed in cell-free cleavage assays with their respective protease. Western blots, fluorescence assays and immunoassay were performed on samples. Results: Following the design, build and validation of protein constructs, specific protease cleavage was initially demonstrated by Western blot. The novel ELISA proved to afford highly sensitive detection of protease activity in all cases. By way of alternative readout, activation of fluorescence signal upon protease cleavage was also demonstrated but did not match the sensitivity provided by the ELISA method. Discussion: This platform, comprising a protease-responsive synthetic protein device and accompanying readout, is suitable for future deployment in a rapid, low-cost, lateral flow setting. The modular protein device can readily accommodate any desired protease-response module (target protease cleavage site). This study validates the concept with three disparate proteases and applications-human infectious disease, cancer and agricultural crop infection.

2.
Heliyon ; 10(6): e27891, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38515683

RESUMO

Sesame meal is a by-product obtained from oil extraction. We investigated the characteristics and antioxidant activities of a sesame protein hydrolysate (SPH-B), as well as its peptide fractions. Four peptide fractions (F1; >100 kDa, F2; 10-100 kDa, F3; 1-10 kDa, and F4; <1 kDa) of SPH-B were prepared. The characteristics and antioxidant properties of SPH-B and its peptide fractions were evaluated. Sesame protein (SP) contained protein fractions with molecular weights ranging from 10 to 44 kDa, whereas SPH-B had peptide fractions ranging from 8 to 44 kDa. The peptide fractions had molecular weight ranging from 7 to 10 kDa. The four peptide fractions had a higher α-helix content and lower surface hydrophobicity than SPH-B and SP. They exhibited better antioxidant properties, with higher ABTS and DPPH radical scavenging activities, higher metal chelating activity, and greater inhibition of linoleic acid peroxidation, suggesting that sesame peptide fractions can use as plant-based functional ingredients and potentially health-promoting properties.

3.
Meat Sci ; 213: 109480, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38461676

RESUMO

This study compared the shelf-life of beef and pork longissimus lumborum muscles (loins) that had the same initial bacterial loads and were held under the same chilled storage conditions. To identify the underlying pathways, comparisons were conducted from the perspective of the spoilage indicators; protease/lipase activity, and the volatile organic compounds (VOC) generated over 28 d of chilled storage. The initial total viable microbial count (TVC) on Day 0 for both type of meat was 4.3 log10 CFU/g. It was found that the TVC of beef and pork did not differ throughout the total chilled storage period and both ultimately exceeded 7 log10 CFU/g after 28 d. Based on total volatile basic nitrogen (TVB-N) guidelines, pork was spoilt after 21 d of chilled storage and therefore 7 d earlier than beef. Changes in the concentration of VOC spoilage biomarkers, including 1-octen-3-ol, 1-octanol, nonanal, and others, confirmed that pork had a shorter shelf-life than beef. An important reason for the difference in shelf-life between the two types of meat was that pork had a higher protease activity, although the beef had higher levels of total lipase activity. These findings help us understand the differences in the spoilage process of raw meat from different species and explore specific measures to control the spoilage of beef or pork.

4.
Pathogens ; 13(1)2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38251351

RESUMO

Naegleria fowleri is a ubiquitous free-living amoeba that causes primary amoebic meningoencephalitis. As a part of the innate immune response at the mucosal level, the proteins lactoferrin (Lf) and lysozyme (Lz) are secreted and eliminate various microorganisms. We demonstrate that N. fowleri survives the individual and combined effects of bovine milk Lf (bLf) and chicken egg Lz (cLz). Moreover, amoebic proliferation was not altered, even at 24 h of co-incubation with each protein. Trophozoites' ultrastructure was evaluated using transmission electron microscopy, and these proteins did not significantly alter their organelles and cytoplasmic membranes. Protease analysis using gelatin-zymograms showed that secreted proteases of N. fowleri were differentially modulated by bLf and cLz at 3, 6, 12, and 24 h. The bLf and cLz combination resulted in the inhibition of N. fowleri-secreted proteases. Additionally, the use of protease inhibitors on bLf-zymograms demonstrated that secreted cysteine proteases participate in the degradation of bLf. Nevertheless, the co-incubation of trophozoites with bLf and/or cLz reduced the cytopathic effect on the MDCK cell line. Our study suggests that bLf and cLz, alone or together, inhibited secreted proteases and reduced the cytopathic effect produced by N. fowleri; however, they do not affect the viability and proliferation of the trophozoites.

5.
bioRxiv ; 2023 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-38105993

RESUMO

Japanese Encephalitis Virus (JEV) NS2B-NS3 is a protein complex composed of NS3 proteases and a NS2B cofactor. The N-terminal protease domain (180 residues) of NS3 (NS3(pro)) interacts directly with a central 40-amino acid hydrophilic domain of NS2B (NS2B(H)) to form an active serine protease. In this study, the recombinant NS2B(H)-NS3(pro) proteases were prepared in E. coli and used to compare the enzymatic activity between genotype I (GI) and III (GIII) NS2B-NS3 proteases. The GI NS2B(H)-NS3(pro) was able to cleave the sites at internal C, NS2A/NS2B, NS2B/NS3 and NS3/NS4A junctions that were identical to the sites proteolytically processed by GIII NS2B(H)-NS3(pro). Analysis of the enzymatic activity of recombinant NS2B(H)-NS3(pro) proteases using a model of fluorogenic peptide substrate revealed that the proteolytical processing activity of GIII NS2B(H)-NS3(pro) was significantly higher than that of GI NS2B(H)-NS3(pro). There were eight amino acid variations between GI and GIII NS2B(H)-NS3(pro), which may be responsible for the difference in enzymatic activities between GI and GIII proteases. Therefore, recombinant mutants were generated by exchanging NS2B(H) and NS3(pro) domains between GI and GIII NS2B(H)-NS3(pro) and subjected to protease activity analysis. Substitution of NS2B(H) significantly altered the protease activities, as compared to the parental NS2B(H)-NS3(pro), suggesting that NS2B(H) played an essential role in regulation of NS3(pro) protease activity. To further identify the amino acids responsible for the difference in protease activities, multiple substitution mutants including the individual and combined mutations at the variant residue 55 and 65 of NS2B(H) were generated and subjected to protease activity analysis. Replacement of NS2B-55 and NS2B-65 of GI to GIII significantly increased the enzymatic activity of GI NS2B(H)-NS3(pro) protease, whereas mutation of NS2B-55 and NS2B-65 of GIII to GI remarkably reduced the enzymatic activity of GIII NS2B(H)-NS3(pro) protease. Overall, these data demonstrated that NS2B-55 and NS2B-65 variations in hydrophilic domain of NS2B co-contributed to the difference in NS2B(H)-NS3(pro) protease activities between GI and GIII. These observations gain an insight into the role of NS2B in regulation of NS3 protease activities, which is useful for understanding the replication of JEV GI and GIII viruses.

6.
Biology (Basel) ; 12(9)2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37759555

RESUMO

Metacaspases are a class of proteases found in plants that have gained attention in recent years due to their involvement in programmed cell death (PCD) and other essential cellular processes. Although structurally homologous to caspases found in animals, metacaspases have distinct properties and functions. There are nine metacaspase genes in the Arabidopsis thaliana genome; these can be type I or type II, and working out the function of each member of the gene family is challenging. In this study, we report the characterisation of one Arabidopsis type II metacaspase, metacaspase-5 (AtMC5; AtMCA-IIb). We detected the expression of AtMC5 only under specific conditions with a strong upregulation by ER stress and oxidative stress at a narrow 6 h time point. Recombinant AtMC5 was successfully purified from E. coli, with the recombinant AtMC5 working optimally at pH 7, using an optimised reaction buffer containing 10 mM calcium chloride together with 15% sucrose. Like other metacaspases, AtMC5 cleaved after arginine residue and demonstrated a substrate preference towards VRPR. Additionally, AtMC5-RFP was shown to be localised in the cytosol and nucleus of transfected cells. We found no evidence of a strong link between AtMC5 and PCD, and the data provide additional insights into the function of metacaspases in plants and will aid in future research toward further understanding their mode of action.

7.
Plants (Basel) ; 12(18)2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37765499

RESUMO

To investigate the toxic effects of lead (Pb) on key metabolic activities essential for proper germination and seedling growth of maize seeds, experiments were carried out with different levels of Pb (0 to 120 mg of Pb L-1 as PbCl2) applied through growth medium to two maize hybrids H-3310S and H-6724. The research findings indicated that growth and metabolic activities were adversely affected by increased Pb contamination in growth medium; however, a slow increase in these parameters was recorded with increasing time from 0 to 120 h. Protease activity decreased with an increase in the level of Pb contamination but increased with time; consequently, a reduction in seed proteins and an increase in total free amino acids were observed with time. Similarly, α-amylase activity decreased with an increase in Pb concentration in growth medium while it increased with increasing time from 0 to 120 h; consequently, reducing and non-reducing sugars increased with time but decreased with exposure to lead. The roots of both maize hybrids had higher Pb contents than those of the shoot, which decreased the uptake of nitrogen, phosphorus, and potassium. All these nutrients are essential for optimal plant growth; therefore, the reduction in growth and biomass of maize seedlings could be due to Pb toxicity that altered metabolic processes, as sugar and amino acids are necessary for the synthesis of metabolic compounds, rapid cell division, and proper functioning of enzymes in the growing embryo, but all were dramatically reduced due to suppression of protease and α-amylase by toxicity of Pb. In general, hybrid H-3310S performed better in Pb-contaminated growth medium than H-6724.

8.
Vet World ; 16(6): 1363-1368, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37577188

RESUMO

Background and Aim: Mastitis in dairy cattle is associated with a high rate of morbidity and death, which has major implications for milk production and quality. This study aimed to investigate the protein component and the activity of matrix metalloproteinase-2 (MMP-2) and -9 (MMP-9) in raw milk samples with different testing scores determined using the California mastitis test (CMT). Materials and Methods: Thirty cows were employed in the study, and milk from each quarter was tested for subclinical mastitis (SCM). According to the results of CMT, raw milk samples were classified into five categories: Healthy (score 0), trace (score T), weakly positive (score 1), distinctly positive (score 2), and strongly positive (score 3) for somatic cell count (SCC). The total milk protein was analyzed using the Bio-Rad protein assay, and the milk protein composition was determined using the sodium dodecyl sulfate-polyacrylamide gel electrophoresis technique. In addition, gelatin zymography was used to evaluate changes in proteolytic abilities. Results: Milk samples with CMT scores of 1 and 3 had the highest total milk protein levels (32.25 ± 12.60 g/L and 32.50 ± 7.67 g/L, respectively), while the samples from healthy cows (CMT score 0) were only 6.75 ± 1.64 g/L. Globulin and lactoferrin were significantly increased in samples with a CMT score of 3 compared with those with other CMT scores. The bovine serum albumin level in samples with a CMT score of 2 was significantly (p < 0.05) higher than those with other CMT scores. No significant differences in casein abundance were found among samples with different CMT scores. Results from analysis of proteolytic activities demonstrated that the level of MMP-9 in samples with a CMT score of 3 was significantly (p < 0.05) higher than those with other CMT scores. Conclusion: The protein content and gelatinolytic activity of milk were drastically altered by the number of SCC, mainly due to SCM.

9.
Biomolecules ; 13(8)2023 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-37627280

RESUMO

The functioning of the immune and reproductive systems is crucial for the fitness and survival of species and is strongly influenced by the environment. To evaluate the effects of short-term heat stress (HS) on these systems, confirming and deepening previous studies, female sea urchin Paracentrotus lividus were exposed for 7 days to 17 °C, 23 and 28 °C. Several biomarkers were detected such as the ferric reducing power (FRAP), ABTS-based total antioxidant capacity (TAC-ABTS), nitric oxide metabolites (NOx), total thiol levels (TTL), myeloperoxidase (MPO) and protease (PA) activities in the coelomic fluid (CF) and mitochondrial membrane potential (MMP), H2O2 content and intracellular pH (pHi) in eggs and coelomocytes, in which TAC-ABTS and reactive nitrogen species (RNS) were also analyzed. In the sea urchins exposed to HS, CF analysis showed a decrease in FRAP levels and an increase in TAC-ABTS, TTL, MPO and PA levels; in coelomocytes, RNS, MMP and H2O2 content increased, whereas pHi decreased; in eggs, increases in MMP, H2O2 content and pHi were found. In conclusion, short-term HS leads to changes in five out of the six CF biomarkers analyzed and functional alterations in the cells involved in either reproductive or immune activities.


Assuntos
Paracentrotus , Feminino , Animais , Peróxido de Hidrogênio , Antioxidantes , Biomarcadores , Ferro , Óxido Nítrico
10.
Inflamm Res ; 72(8): 1709-1717, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37542002

RESUMO

BACKGROUND: Airway inflammation in chronic inflammatory lung diseases (e.g. bronchiectasis) is partly mediated by neutrophil-derived serine protease (NSP)/antiprotease imbalance. NSPs are activated during neutrophil myelopoiesis in bone marrow by cathepsin C (CatC; DPP1). CatC is therefore an attractive target to reduce NSP activity in the lungs of patients with bronchiectasis, restoring the protease/antiprotease balance. We report results from the preclinical pharmacological assessment of the novel CatC inhibitor BI 1291583. METHODS: Binding kinetics of BI 1291583 to human CatC were determined by surface plasmon resonance. In vitro inhibition of human CatC activity was determined by CatC-specific fluorescent assay, and selectivity was assessed against related cathepsins and unrelated proteases. Inhibition of NSP neutrophil elastase (NE) production was assessed in a human neutrophil progenitor cell line. In vivo inhibition of NE and NSP proteinase 3 (PR3) in bronchoalveolar lavage fluid (BALF) neutrophils after lipopolysaccharide (LPS) challenge and distribution of BI 1291583 was determined in a mouse model. RESULTS: BI 1291583 bound human CatC in a covalent, reversible manner, selectively and fully inhibiting CatC enzymatic activity. This inhibition translated to concentration-dependent inhibition of NE activation in U937 cells and dose-dependent, almost-complete inhibition of NE and PR3 activity in BALF neutrophils in an in vivo LPS-challenge model in mice. BI 1291583 exhibited up to 100 times the exposure in the target tissue bone marrow compared with plasma. CONCLUSION: BI 1291583-mediated inhibition of CatC is expected to restore the protease-antiprotease balance in the lungs of patients with chronic airway inflammatory diseases such as bronchiectasis.


Assuntos
Bronquiectasia , Catepsina C , Animais , Humanos , Camundongos , Bronquiectasia/tratamento farmacológico , Catepsina C/antagonistas & inibidores , Elastase de Leucócito , Lipopolissacarídeos , Neutrófilos/metabolismo , Inibidores de Proteases/farmacologia , Serina Proteases/metabolismo
11.
Foods ; 12(15)2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37569174

RESUMO

Meat product is the main food and major source of daily protein intake. Polyphenols are always introduced into many meat products during processing. Some complex interactions may occur between polyphenol and meat protein during the processing, especially thermal processing, which may affect the digestion of protein. In this experiment, chicken protein and tea polyphenol were interacted in simulated systems to explore the effects of the interaction between meat protein and polyphenols on the digestion of meat protein. The mechanism of tea polyphenol inhibiting chicken protein digestion was studied by analyzing the changes of chicken protein in intrinsic fluorescence, surface plasmon resonance (SPR), reactive sulfhydryl group, and solubility in different solvents. The results showed that the chicken protein digestion had a negative correlation with tea polyphenol concentration and interaction temperature, and the meat protein has a higher affinity to EGCG than protease. The mechanism of tea polyphenol inhibiting chicken protein digestion was related to the changing spatial structure of chicken protein and the decreasing activity of proteases. In the simulation system, at low-concentration tea polyphenol, the inhibition of the tea polyphenol on the digestibility of chicken protein might be mainly caused by the changes in chicken protein structure, while at high concentration, the changes in protein structure and the inhibition of proteases activity played a role together. This experiment revealed the effect and the mechanism of polyphenols on the digestion performance of meat protein and provide more references for the further application of polyphenols in meat processing.

12.
Mol Microbiol ; 120(2): 178-193, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37392318

RESUMO

Serine protease autotransporters of Enterobacteriaceae (SPATE) constitute a superfamily of virulence factors, resembling the trypsin-like superfamily of serine proteases. SPATEs accomplish multiple functions associated to disease development of their hosts, which could be the consequence of SPATE cleavage of host cell components. SPATEs have been divided into class-1 and class-2 based on structural differences and biological effects, including similar substrate specificity, cytotoxic effects on cultured cells, and enterotoxin activity on intestinal tissues for class-1 SPATEs, whereas most class-2 SPATEs exhibit a lectin-like activity with a predilection to degrade a variety of mucins, including leukocyte surface O-glycoproteins and soluble host proteins, resulting in mucosal colonization and immune modulation. In this review, the structure of class-1 and class-2 are analyzed, making emphasis on their putative functional subdomains as well as a description of their function is provided, including prototypical mechanism of action.


Assuntos
Proteínas de Escherichia coli , Serina Proteases , Serina Proteases/metabolismo , Enterobacteriaceae/genética , Enterobacteriaceae/metabolismo , Sistemas de Secreção Tipo V , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Células Cultivadas , Glicoproteínas de Membrana
13.
Cells ; 12(14)2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37508515

RESUMO

Idiopathic pulmonary fibrosis (IPF) is the most frequent and severe idiopathic interstitial pneumonia. It is a chronic and progressive disease with a poor prognosis and is a major cause of morbidity and mortality. This disease has no cure; therefore, there is a clinical need to search for alternative treatments with greater efficacy. In this study, we aimed to evaluate the effect of extracellular vesicles (EVs) from Zingiber officinale (EVZO) in a murine model of bleomycin (BLM)-induced IPF administered through an osmotic minipump. EVZO had an average size of 373 nm and a spherical morphology, as identified by scanning electron microscopy. Label-free proteomic analysis of EVZOs was performed by liquid chromatography coupled to mass spectrometry, and 20 proteins were identified. In addition, we demonstrated the protease activity of EVZO by gelatin-degrading zymography assay and the superoxide dismutase (SOD) activity of EVZO by an enzymatic assay. In the BLM-induced IPF mouse model, nasal administration of 50 µg of EVZO induced recovery of alveolar space size and decreased cellular infiltrate, collagen deposition, and expression of α-SMA-positive cells. Additionally, EVZO inhibited inflammatory markers such as iNOS and COX-2, lipid peroxidation, and apoptotic cells. These results show that EVZO may represent a novel natural delivery mechanism to treat IPF.


Assuntos
Vesículas Extracelulares , Fibrose Pulmonar Idiopática , Camundongos , Animais , Bleomicina/uso terapêutico , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Modelos Animais de Doenças , Proteômica , Fibrose Pulmonar Idiopática/metabolismo , Anti-Inflamatórios/farmacologia , Vesículas Extracelulares/metabolismo , Peptídeo Hidrolases
14.
J Virol ; 97(7): e0068623, 2023 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-37367489

RESUMO

Foot-and-mouth disease (FMD) is an acute, highly contagious disease of cloven-hoofed animals caused by FMD virus (FMDV). Currently, the molecular pathogenesis of FMDV infection remains poorly understood. Here, we demonstrated that FMDV infection induced gasdermin E (GSDME)-mediated pyroptosis independent of caspase-3 activity. Further studies showed that FMDV 3Cpro cleaved porcine GSDME (pGSDME) at the Q271-G272 junction adjacent to the cleavage site (D268-A269) of porcine caspase-3 (pCASP3). The inhibition of enzyme activity of 3Cpro failed to cleave pGSDME and induce pyroptosis. Furthermore, overexpression of pCASP3 or 3Cpro-mediated cleavage fragment pGSDME-NT was sufficient to induce pyroptosis. Moreover, the knockdown of GSDME attenuated the pyroptosis caused by FMDV infection. Our study reveals a novel mechanism of pyroptosis induced by FMDV infection and might provide new insights into the pathogenesis of FMDV and the design of antiviral drugs. IMPORTANCE Although FMDV is an important virulent infectious disease virus, few reports have addressed its relationship with pyroptosis or pyroptosis factors, and most studies focus on the immune escape mechanism of FMDV. GSDME (DFNA5) was initially identified as being associated with deafness disorders. Accumulating evidence indicates that GSDME is a key executioner for pyroptosis. Here, we first demonstrate that pGSDME is a novel cleavage substrate of FMDV 3Cpro and can induce pyroptosis. Thus, this study reveals a previously unrecognized novel mechanism of pyroptosis induced by FMDV infection and might provide new insights into the design of anti-FMDV therapies and the mechanisms of pyroptosis induced by other picornavirus infections.


Assuntos
Vírus da Febre Aftosa , Febre Aftosa , Animais , Suínos , Vírus da Febre Aftosa/metabolismo , Caspase 3/metabolismo , Cisteína Endopeptidases/metabolismo , Gasderminas , Piroptose , Proteínas Virais/metabolismo
15.
J Pharm Bioallied Sci ; 15(1): 42-48, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37313543

RESUMO

Context: Bromelain is distributed to all parts of pineapple (Ananas comusus (L.) Merr), including the peel, core, and crown, which are agricultural waste that has not been utilized properly. Aims: The purpose of this study was to determine the character and protease activity of crude bromelain from the Indonesian pineapple peel, core, and crown. The pineapple was collected from Subang district, West Java Province, Indonesia. Methods and Material: The three crude bromelains were obtained through the precipitation process with ethanol, then a protein qualitative and quantitative analysis was performed. Protease activity was determined by measuring the tyrosine produced from casein hydrolysis. The characters of crude bromelains were determined by evaluating the protease activity in various pH, temperature, and substrate concentration. Statistical Analysis Used: One-way analysis of variance was conducted to analyze the data statistically. Results: The three crude bromelains can be isolated from the peel, core, and crown of pineapple fruit with protease activity in the range of 38.32-46.78 units. Crude bromelains have an optimum temperature of 55°C for the peel and core and 35°C for the crown. All crude bromelains have an optimum pH of pH 7. The three crude bromelains have Vmax in the range of 140.85 to 285.71 units and KM in the range of 15298.59 to 18370.86 ppm. Conclusions: It concluded that the three crude bromelains have protease activity with the specific character and kinetic parameter.

16.
J Pharm Biomed Anal ; 229: 115376, 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37011552

RESUMO

Imbalances between proteases and protease inhibitors have been associated with several pathological conditions including emphysema as seen in α1-antitrypsin deficiency. For this pathological condition, unimpeded neutrophil elastase activity has been ascribed a pivotal role in the destruction of lung tissue and thus in disease progression. Therefore, low, or non-quantifiable neutrophil elastase (NE) activity levels determined in bronchoalveolar lavage solutions indicate the success of α1-antitrypsin (AAT) augmentation therapy as NE activity will be erased. To overcome the known limitations of available elastase activity assays regarding sensitivity and selectivity, we developed a new elastase activity assay, which fundamentally relies on the highly specific complex formation between AAT and active elastase. Plate-bound AAT captured active elastase from the sample undergoing complex formation, followed by the immunological detection of human NE. This assay principle facilitated the measurement of low pM amounts of active human NE. The data of the assay performance check demonstrated adequate accuracy and precision profiles meeting currently accepted best practices for this activity assay, which can be classified as a ligand-binding assay. Furthermore, spike-recovery studies at low human NE levels, carried out for three human bronchoalveolar samples, resulted in recoveries within the 100 ± 20% range, while good linearity and parallelism of the samples' dilution-response curves was observed. Altogether, complemented by the data of selectivity and robustness studies and the accuracy and precision profile obtained in buffer, this newly developed human NE activity assay was demonstrated to perform accurately and precisely in clinically relevant samples.


Assuntos
Elastase de Leucócito , alfa 1-Antitripsina , Humanos , alfa 1-Antitripsina/farmacologia , alfa 1-Antitripsina/uso terapêutico , Pulmão , Inibidores de Proteases , Neutrófilos
17.
Protein J ; 42(4): 343-354, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37093417

RESUMO

In many bacteria, the High Temperature requirement A (HtrA) protein functions as a chaperone and protease. HtrA is an important factor in stress tolerance and plays a significant role in the virulence of several pathogenic bacteria. Camostat, gabexate and nafamostat mesylates are serine protease inhibitors and have recently shown a great impact in the inhibition studies of SARS-CoV2. In this study, the inhibition of Listeria monocytogenes HtrA (LmHtrA) protease activity was analysed using these three inhibitors. The cleavage assay, using human fibrinogen and casein as substrates, revealed that the three inhibitors effectively inhibit the protease activity of LmHtrA. The agar plate assay and spectrophotometric analysis concluded that the inhibition of nafamostat (IC50 value of 6.6 ± 0.4 µM) is more effective compared to the other two inhibitors. Previous studies revealed that at the active site of the protease, these inhibitors are hydrolysed and one of the hydrolysates is covalently bound to the active site serine. To understand the mode of binding of these inhibitors at the active site of LmHtrA, docking of the inhibitors followed by molecular dynamics simulations were carried out. Analysis of the LmHtrA-inhibitor complex structures revealed that the covalently bound inhibitor is unable to occupy the S1 pocket of the LmHtrA which is in contrast to the previously determined camostat and nafamostat complex structures. This observation provides the first glimpse of the substrate specificity of LmHtrA which is not known. The obtained results also suggest that the development of novel inhibitors of LmHtrA and its homologs with active site architecture similar to LmHtrA can be pursued with suitable modification of these inhibitors. To date, only a very few studies have been carried out on identifying the inhibitors of HtrA proteolytic activity.


Assuntos
COVID-19 , Gabexato , Listeria monocytogenes , Humanos , Gabexato/farmacologia , Peptídeo Hidrolases , RNA Viral , SARS-CoV-2 , Mesilatos , Inibidores de Proteases/farmacologia
18.
Microorganisms ; 11(4)2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-37110316

RESUMO

Consumers are becoming aware of functional ingredients such as medicinal herbs, polyphenols, mushrooms, amino acids, proteins, and probiotics more than ever before. Like yogurt and its probiotics, L-glutamine, quercetin, slippery elm bark, marshmallow root, N-acetyl-D-glucosamine, licorice root, maitake mushrooms, and zinc orotate have demonstrated health benefits through gut microbiota. The impact of these ingredients on yogurt starter culture bacteria characteristics is not well known. The objective of this study was to determine the influence of these ingredients on the probiotic characteristics, tolerance to gastric juices and lysozyme, protease activity, and viability of Streptococcus thermophilus STI-06 and Lactobacillus bulgaricus LB-12. Acid tolerance was determined at 0, 30, 60, 90, and 120 min of incubation, whereas bile tolerance was analyzed at 0, 4, and 8 h. The microbial growth was determined at 0, 2, 4, 6, 8, 10, 12, 14, and 16 h of incubation, while protease activity was evaluated at 0, 12, and 24 h. The application of marshmallow root, licorice root, and slippery elm bark improved bile tolerance and acid tolerance of S. thermophilus. These ingredients did not impact the bile tolerance, acid tolerance, and simulated gastric juice tolerance characteristics of L. bulgaricus over 8 h and 120 min (respectively) of incubation. Similarly, the growth of S. thermophilus and L. bulgaricus was not affected by any of these functional ingredients. The application of marshmallow root, N-acetyl-D-glucosamine, and maitake mushroom significantly increased the protease activity of S. thermophilus, whereas the protease activity of L. bulgaricus was not affected by any ingredient. Compared to the control, marshmallow root and quercetin samples had higher mean log counts and log counts for S. thermophilus on the simulated gastric juice and lysozyme resistance in vitro test, respectively. For L. bulgaricus, licorice root, quercetin, marshmallow root, and slippery elm bark samples had higher log counts than the control samples.

19.
Vet Res Commun ; 47(3): 1379-1391, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36809600

RESUMO

INTRODUCTION: Paenibacillus larvae is a spore-forming bacillus, the most important bacterial pathogen of honeybee larvae and the causative agent of American foulbrood (AFB). Control measures are limited and represent a challenge for both beekeepers and researchers. For this reason, many studies focus on the search for alternative treatments based on natural products. AIM: The objective of this study was to determine the antimicrobial activity of the hexanic extract (HE) of Achyrocline satureioides on P. larvae and the inhibitory activity on some mechanisms related to pathogenicity. MATERIAL AND METHODS: The Minimum Inhibitory Concentration (MIC) of the HE was determined by the broth microdilution technique and the Minimum Bactericidal Concentration (MBC) by the microdrop technique. Swimming and swarming motility was evaluated in plates with 0.3 and 0.5% agar, respectively. Biofilm formation was evaluated and quantified by the Congo red and crystal violet method. The protease activity was evaluated by the qualitative technique on skim milk agar plates. RESULTS: It was determined that the MIC of the HE on four strains of P. larvae ranged between 0.3 and 9.37 µg/ml and the MBC between 1.17 and 150 µg/ml. On the other hand, sub-inhibitory concentrations of the HE were able to decrease swimming motility, biofilm formation and the proteases production of P. larvae.


Assuntos
Achyrocline , Anti-Infecciosos , Paenibacillus larvae , Animais , Achyrocline/química , Ágar/farmacologia , Virulência , Larva , Anti-Infecciosos/farmacologia , Extratos Vegetais/farmacologia
20.
Molecules ; 28(4)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36838935

RESUMO

Phospholipase A2 (PLA2) promotes inflammation via lipid mediators and releases arachidonic acid (AA), and these enzymes have been found to be elevated in a variety of diseases, including rheumatoid arthritis, sepsis, and atherosclerosis. The mobilization of AA by PLA2 and subsequent synthesis of prostaglandins are regarded as critical events in inflammation. Inflammatory processes may be treated with drugs that inhibit PLA2, thereby blocking the COX and LOX pathways in the AA cascade. To address this issue, we report herein an efficient method for the synthesis of a series of octahydroquinazolinone compounds (4a-h) in the presence of the catalyst Pd-HPW/SiO2 and their phospholipase A2, as well as protease inhibitory activities. Among eight compounds, two of them exhibited overwhelming results against PLA2 and protease. By using FT-IR, Raman, NMR, and mass spectroscopy, two novel compounds were thoroughly studied. After carefully examining the SAR of the investigated compounds against these enzymes, it was found that compounds (4a, 4b) containing both electron-donating and electron-withdrawing groups on the phenyl ring exhibited higher activity than compounds with only one of these groups. DFT studies were employed to study the electronic nature and reactivity properties of the molecules by optimizing at the BLYP/cc-pVDZ. Natural bond orbitals helped to study the various electron delocalizations in the molecules, and the frontier molecular orbitals helped with the reactivity and stability parameters. The nature and extent of the expressed biological activity of the molecule were studied using molecular docking with human non-pancreatic secretory phospholipase A2 (hnps-PLA2) (PDB ID: 1DB4) and protease K (PDB ID: 2PWB). The drug-ability of the molecule has been tested using ADMET, and pharmacodynamics data have been extracted. Both the compounds qualify for ADME properties and follow Lipinski's rule of five.


Assuntos
Inibidores de Proteases , Dióxido de Silício , Humanos , Simulação de Acoplamento Molecular , Espectroscopia de Infravermelho com Transformada de Fourier , Fosfolipases A2/metabolismo , Ácido Araquidônico/metabolismo , Peptídeo Hidrolases , Inibidores de Fosfolipase A2/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...